本书对数据挖掘的基本算法进行了系统介绍,不仅介绍了每种算法的基本原理,而且配有大量例题以及源代码,并对源代码进行了分析。这种理论与实践相结合的方式有助于读者较好地理解和掌握抽象的数据挖掘算法。 全书共11章,内容涵盖了数据预处理、关联规则挖掘算法、分类算法和聚类算法,具体章节包括绪论、数据预处理、关联规则挖掘、决策树分类算法、贝叶斯分类算法、人工神经网络算法、支持向量机、Kmeans聚类算法、K中心点聚类算法、神经网络聚类算法:SOM,以及数据挖掘的发展等内容。 本书可作为高等院校数据挖掘课程的教材,也可作为从事数据挖掘工作以及其他相关工程技术工作人员的参考书。