《计算机视觉之PyTorch数字图像处理》以数字图像处理为主题,在详细介绍数字图像处理主流算法的基础上,配合丰富的实战案例,用PyTorch深度学习框架对相关算法进行应用实践。本书一方面从张量的维度对经典数字图像处理算法进行详细的介绍,另一方面从深度学习的维度对图像分类、图像分割和图像检测进行细致的讲解,从而帮助读者较为系统地掌握数字图像处理的相关理论知识和实际应用。 《计算机视觉之PyTorch数字图像处理》分为3篇,共11章。第1篇图像处理基础知识,包括计算机视觉与数字图像概述、搭建开发环境和Python编程基础;第2篇基于经典方法的图像处理,包括图像处理基础知识、图像的基础特征、自动梯度与神经网络、数据准备与图像预处理;第3篇基于深度学习的图像处理,包括图像分类、图像分割、目标检测和模型部署。 《计算机视觉之PyTorch数字图像处理》内容丰富,讲解由浅入深、案例丰富、实用性强,特别适合数字图像处理的入门与进阶人员阅读,也适合数字图像处理的从业人员与研究人员阅读,还可作为高等院校数字图像处理相关课程的教材。
本书以模糊计算、神经计算、进化计算三大模块为主,从理论基础和实践应用两个维度全面、系统地介绍关于计算智能的常见算法,并设计8个上机实验,以满足前面章节内容仿真验证的需要。全书共11章,内容分别为绪论、模糊系统理论、模糊系统应用、神经网络理论、支持向量机、深度学习、遗传算法、遗传规划、蚁群算法、粒子群算法、新型群智能优化算法等知识,并对大部分知识点配以相应的案例。本书主要面向广大从事数据分析、机器学习、数据挖掘或深度学习的专业人员,从事高等教育的专任教师,高等学校的在读学生及相关领域的广大科技人员。