全部
图书
动态
    找到 5 条结果 按相关性 按时间降序

    图像处理中的数学修炼(第2版)

    [图书] - 左飞 - 清华大学出版社 - 2020

    全书共分为两大部分,第一部分总结了图像处理中可能用到的基本数学原理:具体内容包括微积分、场论、复变函数、泛函分析、偏微分方程等内容。这些话题每一个展开都有相当涉及到相当多的内容,而我们第一部分所完成的,恰恰是挟取各门数学知识中与图像处理最为密切相关的部分,这样才能方便数学基础薄弱的读者集中精力打攻坚战,而无需耗费过多精力却抓不到重点。

    统计学习理论与方法——R语言版

    [图书] - 左飞 - 清华大学出版社 - 2020

    本书从统计学观点出发,以数理统计为基础,全面系统地介绍了统计机器学习的主要方法。内容涉及回归(线性回归、多项式回归、非线性回归、岭回归,以及LASSO等)、分类(感知机、逻辑回归、朴素贝叶斯、决策树、支持向量机、人工神经网络等)、聚类(K均值、EM算法、密度聚类等)、蒙特卡洛采样(拒绝采样、自适应拒绝采样、重要性采样、吉布斯采样和马尔科夫链蒙特卡洛等)、降维与流形学习(SVD、PCA和MDS等),以及概率图模型基础等话题。此外,为方便读者自学,本书还扼要地介绍了机器学习中所必备的数学知识(包括概率论与数理统计、凸优化及泛函分析基础等)。 本书是统计机器学习及相关课程的教学参考书,适用于高等院校人工智能、机器学习或数据挖掘等相关专业的师生研习之用,也可供从事计算机应用,特别是数据科学相关专业的研发人员参考。

    机器学习中的数学修炼

    [图书] - 左飞 - 清华大学出版社 - 2020

    全书共分为两篇:在上篇中,将从浩瀚的数学海洋中撷取机器学习研究人员最为必须和重要的数学基础。内容主要包括:微积分(含场论)、数值计算和常用最优化方法、概率论基础与数理统计、线性代数等。在下篇中,将选取机器学习中最为常用的算法和模型进行讲解,这部分内容将涉及(广义)线性回归、图模型(包含贝叶斯网络和HMM等)、分类算法(包括SVM,逻辑回归,神经网络等)和聚类算法(包括K均值和EM算法等)等话题。

    机器学习原理与实践(Python版)

    [图书] - 左飞,补彬 - 清华大学出版社 - 2021

    本书系统地介绍统计分析和机器学习领域中最为重要和流行的多种技术及其基本原理,本书在详解有关算法的基础上,结合大量Python语言实例演示了这些理论在实践中的使用方法。具体内容包括线性回归(包括岭回归和Lasso方法)、逻辑回归、支持向量机、感知机与神经网络、聚类分析(包括K均值算法、EM算法、密度聚类等)、降维与流形学习、集成学习、KNN、朴素贝叶斯、概率图模型(包括贝叶斯网络和HMM模型)等内容。

    Python机器学习中的数学修炼

    [图书] - 左飞 - 清华大学出版社 - 2021

    数学是机器学习和数据科学的基础,任何期望涉足相关领域并切实领悟具体技术与方法的人都无法绕过数学这一关。本书系统地整理并介绍了机器学习中所涉及的必备数学基础,具体包括概率论与数理统计、微积分(主要是与最优化内容相关的部分)、凸优化及拉格朗日乘数法、数值计算、泛函分析基础(例如核方法赖以建立的希尔伯特空间理论)以及蒙特卡洛采样(拒绝采样、自适应拒绝采样、重要性采样、吉布斯采样和马尔可夫链蒙特卡洛)等。 为了帮助读者强化所学,本书还从上述数学基础出发,介绍了回归、分类(感知机、逻辑回归、朴素贝叶斯、决策树、支持向量机、人工神经网络等)、聚类、降维与流形学习、集成学习以及概率图模型等机器学习中的重要话题。 本书既可作为机器学习及相关课程的教学参考书,适合高等院校人工智能、机器学习或数据挖掘等相关专业的师生研习之用,也可供从事计算机应用(特别是数据科学相关专业)的研发人员参考。

    • 1