本书讨论了机器学习的基本问题和基本算法。从方便学习的目的出发,本书主要以聚类任务、回归任务、分类任务、标注任务、概率模型、神经网络模型、深度学习模型七个主题对相关内容进行组织。前四个主题以机器学习的四个主要任务为核心讨论相关算法及基础知识。概率类模型和神经网络类模型可以完成聚类、回归、分类和标注等多类任务,但它们各有自成体系的基础知识,因此各设一个主题进行集中讨论,可能更方便读者理解。深度学习模型属于神经网络模型,但它具有明显的特征和广泛的应用,是机器学习领域的后起之秀
本书以任务为导向,讨论了机器学习和深度学习的主要问题,包括聚类、回归、分类、标注、降维、特征工程、超参数调优、序列决策(强化学习)和对抗攻击等。书中对上述每个问题,分别从决策函数类模型、概率类模型和神经网络类模型三个角度来讨论具体的实现算法。 本书在内容上兼顾基础知识和应用实践。总体上,以基本理论知识为主线,逐步展开,从概念入手,逐步讨论算法思想,着重考虑知识的关联性,最后落实到机器学习扩展库和深度学习框架的具体应用。具体到每个模型,采用以示例入手、逐渐深入的方式,尽量给出详尽的分析或推导。 本书的特点是主要通过示例来讨论相关模型,适合初学者入门使用。本书示例代码采用Python 3程序设计语言编写。传统机器学习算法的应用示例主要以ScikitLearn机器学习扩展库来实现,隐马尔可夫模型示例用hmmlearn扩展库来实现,条件随机场模型示例用CRF++工具来实现。深度学习算法的示例采用TensorFlow 2框架和MindSpore框架来实现。 本书适合计算机、人工智能及相关专业的学生使用,对于相关技术研究人员也有参考价值。